Free Vibration Analysis of Moderately Thick Functionally Graded Plates with Multiple Circular and Square Cutouts Using Finite Element Method
Authors
Abstract:
A simple formulation for studying the free vibration of shear-deformable functionally graded plates of different shapes with different cutouts using the finite element method is presented. The aim is to fill the void in the available literature with respect to the free vibration results of functionally graded plates of different shapes with different cutouts. The material properties of the plates are assumed to vary according to a power law distribution in terms of the volume fraction of the constituents. Validation of the formulation is done with the help of convergence studies with respect to the number of nodes and the results are compared with those from past investigations available only for simpler problems. In this paper rectangular, trapezoidal and circular plates with cutouts are studied and the effects of volume fraction index, thickness ratio and different external boundary conditions on the natural frequencies of plates are studied.
similar resources
Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...
full textfree and forced transverse vibration analysis of moderately thick orthotropic plates using spectral finite element method
in the present study, a spectral finite element method is developed for free and forced transverse vibration of levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. in the first step, the governing out-of-plane differential equations are tr...
full textDynamic Stiffness Method for Free Vibration of Moderately Thick Functionally Graded Plates
In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-ally graded material plates is developed. The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties through ...
full textFree Vibration Analysis of Moderately Thick Orthotropic Functionally Graded Plates with General Boundary Restraints
In this paper, a modified Fourier series method is presented for the free vibration of moderately thick orthotropic functionally graded plates with general boundary restraints based on the first-order shear deformation theory. Regardless of boundary restraints, displacements and rotations of each plate are described as an improved form of double Fourier cosine series and several closed-form aux...
full textfree vibration analysis of thick functionally graded rectangular plates using variable refined plate theory
in this paper, free vibration of functionally graded rectangular simply supported thick plates based on two variable refined plate theory is presented. according to a power-law distribution, the mass density and elasticity modulus of the plate are considered to vary while poisson’s ratio is constant. in order to extract the five constitutive equations of motion, hamilton principle is employed. ...
full textFree Vibration Analysis of Nanoplates Made of Functionally Graded Materials Based On Nonlocal Elasticity Theory Using Finite Element Method
In this paper, an analysis of free vibration in functionally graded nanoplate is presented. Third-order shear deformation plate theory is used to reach more accuracy in results. Small-scale effects are investigated using Eringen`s nonlocal theory. The governing equations of motion are obtained by Hamilton`s principle. It is assumed that the properties of nanoplates vary through their thicknesse...
full textMy Resources
Journal title
volume 7 issue 1
pages 83- 95
publication date 2015-03-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023